Wastewater Treatment Using a Photoelectrochemical Oxidation Process for the Coffee Processing Industry Optimization of Chemical Oxygen Demand (COD) Removal Using Response Surface Methodology

The elimination of organic compounds in coffee processing effluent utilizing electrochemical oxidation (ECO) as well as a combination of electrochemical oxidation (ECO) and ultraviolet and hydrogen peroxide (UV/H2O2) was explored. Then, the percentage reduction of chemical oxygen demand (COD) was in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of analytical chemistry 2022-07, Vol.2022, p.1-12
Hauptverfasser: Abdi, Firomsa Bidira, Samuel, Zerihun Asmelash, Debela, Seifu Kebede, Amibo, Temesgen Abeto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The elimination of organic compounds in coffee processing effluent utilizing electrochemical oxidation (ECO) as well as a combination of electrochemical oxidation (ECO) and ultraviolet and hydrogen peroxide (UV/H2O2) was explored. Then, the percentage reduction of chemical oxygen demand (COD) was investigated. The effect of different experimental factors such as solution pH, sodium chloride (NaCl) concentration, calcium chloride (CaCl2) concentration, electric current, electrolysis duration, and hydrogen peroxide dosage on the percent removal efficiency of the hybrid electrochemical oxidation (ECO) with the ultraviolet and hydrogen peroxide (UV/H2O2) process has been investigated. The response surface methodology (RSM) based on central composite design (CCD) was used to organize the trial runs and optimize the results. The hybrid electrochemical oxidation (ECO) with the ultraviolet and hydrogen peroxide (UV/H2O2) process removed 99.61% of the chemical oxygen demand (COD) with a low power usage of 1.12 kWh/m3 compared to the other procedures, according to the experimental data analysis. These findings were obtained with a pH of 7, a current of 0.40 A, 1.5 g of CaCl2, and a total electrolysis period of 40 minutes. When it came to eliminating organic compounds from coffee manufacturing effluent, CaCl2 outperformed NaCl. Analysis of variance (ANOVA) with 95% confidence limits was used to examine the significance of independent variables and their interactions.
ISSN:1687-8760
1687-8779
DOI:10.1155/2022/1734411