A rapid multiplication system for ‘Candidatus Liberibacter asiaticus’ through regeneration of axillary buds in vitro

'Candidatus Liberibacter asiaticus (CLas)', which causes citrus Huanglongbing (HLB) disease, has not been successfully cultured in vitro to date. Here, a rapid multiplication system for CLas was established through in vitro regeneration of axillary buds from CLas-infected 'Changyechen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Integrative Agriculture 2022-06, Vol.21 (6), p.1683-1693
Hauptverfasser: Tian-gang, LEI, Yong-rui, HE, Xiu-ping, ZOU, Xue-feng, WANG, Shi-min, FU, Ai-hong, PENG, Lan-zhen, XU, Li-xiao, YAO, Shan-chun, CHEN, Chang-yong, ZHOU
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:'Candidatus Liberibacter asiaticus (CLas)', which causes citrus Huanglongbing (HLB) disease, has not been successfully cultured in vitro to date. Here, a rapid multiplication system for CLas was established through in vitro regeneration of axillary buds from CLas-infected 'Changyecheng' sweet orange (Citrus sinensis Osbeck). Stem segments with a single axillary bud were cultured in vitro to allow CLas to multiply in the regenerating axillary buds. A high CLas titer was detected in the regenerated shoots on an optimized medium at 30 days after germination (DAG). This titer was 28.2-fold higher than in the midribs from CLas-infected trees growing in the greenhouse. To minimize contamination during in vitro regeneration, CLas-infected axillary buds were micrografted onto seedlings of 'Changyecheng' sweet orange and cultured in a liquid medium. In this culture, the titers of CLas in regenerated shoots rapidly increased from 7.5×104 to 1.4×108 cells μg–1 of citrus DNA during the first 40 DAG. The percentages of shoots with >1×108 CLas cells μg–1 DNA were 30 and 40% at 30 and 40 DAG, respectively. Direct tissue blot immunoassay (DTBIA) indicated that the distribution of CLas was much more uniform in regenerated plantlets than in CLas-infected trees growing in the greenhouse. The disease symptoms in the plantlets were die-back, stunted growth, leaf necrosis/yellowing, and defoliation. The death rate of the plantlets was 82.0% at 60 DAG. Our results show that CLas can effectively multiply in citrus plantlests in vitro. This method will be useful for studying plant-HLB interactions and for rapid screening of therapeutic compounds against CLas in citrus.
ISSN:2095-3119
DOI:10.1016/S2095-3119(21)63856-X