Skin lesion segmentation using deep learning algorithm with ant colony optimization

Segmentation of skin lesions remains essential in histological diagnosis and skin cancer surveillance. Recent advances in deep learning have paved the way for greater improvements in medical imaging. The Hybrid Residual Networks (ResUNet) model, supplemented with Ant Colony Optimization (ACO), repre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC medical informatics and decision making 2024-09, Vol.24 (1), p.265-18, Article 265
Hauptverfasser: Sarwar, Nadeem, Irshad, Asma, Naith, Qamar H, D Alsufiani, Kholod, Almalki, Faris A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Segmentation of skin lesions remains essential in histological diagnosis and skin cancer surveillance. Recent advances in deep learning have paved the way for greater improvements in medical imaging. The Hybrid Residual Networks (ResUNet) model, supplemented with Ant Colony Optimization (ACO), represents the synergy of these improvements aimed at improving the efficiency and effectiveness of skin lesion diagnosis. This paper seeks to evaluate the effectiveness of the Hybrid ResUNet model for skin lesion classification and assess its impact on optimizing ACO performance to bridge the gap between computational efficiency and clinical utility. The study used a deep learning design on a complex dataset that included a variety of skin lesions. The method includes training a Hybrid ResUNet model with standard parameters and fine-tuning using ACO for hyperparameter optimization. Performance was evaluated using traditional metrics such as accuracy, dice coefficient, and Jaccard index compared with existing models such as residual network (ResNet) and U-Net. The proposed hybrid ResUNet model exhibited excellent classification accuracy, reflected in the noticeable improvement in all evaluated metrics. His ability to describe complex lesions was particularly outstanding, improving diagnostic accuracy. Our experimental results demonstrate that the proposed Hybrid ResUNet model outperforms existing state-of-the-art methods, achieving an accuracy of 95.8%, a Dice coefficient of 93.1%, and a Jaccard index of 87.5. The addition of ResUNet to ACO in the proposed Hybrid ResUNet model significantly improves the classification of skin lesions. This integration goes beyond traditional paradigms and demonstrates a viable strategy for deploying AI-powered tools in clinical settings. Future investigations will focus on increasing the version's abilities by using multi-modal imaging information, experimenting with alternative optimization algorithms, and comparing real-world medical applicability. There is also a promising scope for enhancing computational performance and exploring the model's interpretability for more clinical adoption.
ISSN:1472-6947
1472-6947
DOI:10.1186/s12911-024-02686-x