Hilbert series for ALP EFTs

A bstract Axions and axion-like particles (ALPs) are ubiquitous in popular attempts to solve supercalifragilisticexpialidocious puzzles of Nature. A widespread and vivid experimental programme spanning a vast range of mass scales and decades of couplings strives to find evidence for these elusive bu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2023-11, Vol.2023 (11), p.196-64, Article 196
Hauptverfasser: Grojean, Christophe, Kley, Jonathan, Yao, Chang-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract Axions and axion-like particles (ALPs) are ubiquitous in popular attempts to solve supercalifragilisticexpialidocious puzzles of Nature. A widespread and vivid experimental programme spanning a vast range of mass scales and decades of couplings strives to find evidence for these elusive but theoretically well-motivated particles. In the absence of clear guiding principle, effective field theories (EFTs) prove to be an efficient tool in this experimental quest. Hilbert series technologies are a privileged instrument of the EFT toolbox to enumerate and classify operators. In this work, we compute explicitly the Hilbert series capturing the interactions of a generic ALP to the Standard Model particles above and below the electroweak symmetry scale, which allow us to build bases of operators up to dimension 8. In particular, we revealed a remarkable structure of the Hilbert series that isolates the shift-symmetry breaking and preserving interactions. In addition, with the Hilbert series method, we enumerate the sources of CP violation in terms of CP-even, CP-odd and CP-violating operators. Furthermore, we provide an supplementary file of the Hilbert series up to dimension 15 to supplement our findings, which can be used for further analysis and exploration.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP11(2023)196