In Vivo and In Silico Analgesic Activity of Ficus populifolia Extract Containing 2-O-β-D-(3',4',6'-Tri-acetyl)-glucopyranosyl-3-methyl Pentanoic Acid

Natural product-based structural templates have immensely shaped small molecule drug discovery, and new biogenic natural products have randomly provided the leads and molecular targets in anti-analgesic activity spheres. Pain relief achieved through opiates and non-steroidal anti-inflammatory drugs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2023-01, Vol.24 (3), p.2270
Hauptverfasser: Mohammed, Hamdoon A, Abouzied, Amr S, Mohammed, Salman A A, Khan, Riaz A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Natural product-based structural templates have immensely shaped small molecule drug discovery, and new biogenic natural products have randomly provided the leads and molecular targets in anti-analgesic activity spheres. Pain relief achieved through opiates and non-steroidal anti-inflammatory drugs (NSAIDs) has been under constant scrutiny owing to their tolerance, dependency, and other organs toxicities and tissue damage, including harm to the gastrointestinal tract (GIT) and renal tissues. A new, 3',4',6'-triacetylated-glucoside, 2-O-β-D-(3',4',6'-tri-acetyl)-glucopyranosyl-3-methyl pentanoic acid was obtained from , and characterized through a detailed NMR spectroscopic analysis, i.e., H-NMR, C-DEPT-135, and the 2D nuclear magnetic resonance (NMR) correlations. The product was in silico investigated for its analgesic prowess, COX-2 binding feasibility and scores, drug likeliness, ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, possible biosystem's toxicity using the Discovery Studio , and other molecular studies computational software programs. The glycosidic product showed strong potential as an analgesic agent. However, an in vivo evaluation, though at strong levels of pain-relieving action, was estimated on the compound's extract owing to the quantity and yield issues of the glycosidic product. Nonetheless, the extract showed the analgesic potency in eight-week-old male mice on day seven of the administration of the extract's dose in acetic acid-induced writhing and hot-plate methods. Acetic acid-induced abdominal writhing for all the treated groups decreased significantly ( < 0.0001), as compared to the control group (n = 6) by 62.9%, 67.9%, and 70.9% of a dose of 100 mg/kg (n = 6), 200 mg/kg (n = 6), and 400 mg/kg (n = 6), respectively. Similarly, using the analgesia meter, the reaction time to pain sensation increased significantly ( < 0.0001), as compared to the control (n = 6). The findings indicated peripheral and central-nervous-system-mediated analgesic action of the product obtained from the corresponding extract.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms24032270