Engineered hypermutation adapts cyanobacterial photosynthesis to combined high light and high temperature stress
Photosynthesis can be impaired by combined high light and high temperature (HLHT) stress. Obtaining HLHT tolerant photoautotrophs is laborious and time-consuming, and in most cases the underlying molecular mechanisms remain unclear. Here, we increase the mutation rates of cyanobacterium Synechococcu...
Gespeichert in:
Veröffentlicht in: | Nature communications 2023-03, Vol.14 (1), p.1238-1238, Article 1238 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photosynthesis can be impaired by combined high light and high temperature (HLHT) stress. Obtaining HLHT tolerant photoautotrophs is laborious and time-consuming, and in most cases the underlying molecular mechanisms remain unclear. Here, we increase the mutation rates of cyanobacterium
Synechococcus elongatus
PCC 7942 by three orders of magnitude through combinatory perturbations of the genetic fidelity machinery and cultivation environment. Utilizing the hypermutation system, we isolate
Synechococcus
mutants with improved HLHT tolerance and identify genome mutations contributing to the adaptation process. A specific mutation located in the upstream non-coding region of the gene encoding a shikimate kinase results in enhanced expression of this gene. Overexpression of the shikimate kinase encoding gene in both
Synechococcus
and
Synechocystis
leads to improved HLHT tolerance. Transcriptome analysis indicates that the mutation remodels the photosynthetic chain and metabolism network in
Synechococcus
. Thus, mutations identified by the hypermutation system are useful for engineering cyanobacteria with improved HLHT tolerance.
Cyanobacteria mutants with improved tolerance to combined high light and high temperature (HLHT) are rarely reported. Here, the authors use a hypermutation system for adaptive laboratory evolution and identify a mutant with improved HLHT tolerance by enhancing expression of shikimate kinase. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-023-36964-5 |