PAPR reduction using SLM-PTS-CT hybrid PAPR method for optical NOMA waveform

In this article, we focus on optimising the SLM-PTS-CT (selective mapping, partial transmission sequence, circular transformation) hybrid method for optical non-orthogonal multiple access (O-NOMA) waveforms. The goal is to enhance the spectrum performance and practicality of O-NOMA systems while mit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2023-10, Vol.9 (10), p.e20901-e20901, Article e20901
Hauptverfasser: Kumar, Arun, Rajagopal, Karthikeyan, Alruwais, Nuha, Alshahrani, Haya Mesfer, Mahgoub, Hany, Othman, Kamal M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we focus on optimising the SLM-PTS-CT (selective mapping, partial transmission sequence, circular transformation) hybrid method for optical non-orthogonal multiple access (O-NOMA) waveforms. The goal is to enhance the spectrum performance and practicality of O-NOMA systems while mitigating the PAPR issue through a hybrid approach. The SLM-PTS-CT hybrid method is applicable to O-NOMA waveforms, providing effective PAPR reduction. By dividing the data sequence into sub-blocks, applying phase factors, and rotating the phase of the subcarriers in such a way that the peaks of the signal are distributed more uniformly, the proposed SLM-PTS-CT achieves an optimal PAPR reduction while maintaining the benefits of O-NOMA. The efficiency of the proposed method is analysed by estimating the performance of several parameters, such as bit error rate (BER), PAPR, and power spectral density (PSD), by increasing the number of sub-blocks (S) and phase factor (P). Further, the proposed SLM-PTS-CT is compared with the conventional SLM-PTS, SLM, and PTS. The simulation results demonstrate that the proposed approach efficiently improves spectral efficiency, preserves BER performance, and reduces PAPR as compared with conventional methods.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2023.e20901