Metformin induces muscle atrophy by transcriptional regulation of myostatin via HDAC6 and FoxO3a
Background Skeletal muscle atrophy is a severe condition that involves loss of muscle mass and quality. Drug intake can also cause muscle atrophy. Biguanide metformin is the first‐line and most widely prescribed anti‐diabetic drug for patients with type 2 diabetes. The molecular mechanism of metform...
Gespeichert in:
Veröffentlicht in: | Journal of Cachexia, Sarcopenia and Muscle Sarcopenia and Muscle, 2022-02, Vol.13 (1), p.605-620 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
Skeletal muscle atrophy is a severe condition that involves loss of muscle mass and quality. Drug intake can also cause muscle atrophy. Biguanide metformin is the first‐line and most widely prescribed anti‐diabetic drug for patients with type 2 diabetes. The molecular mechanism of metformin in muscle is unclear.
Methods
Myostatin expression was investigated at the protein and transcript levels after metformin administration. To investigate the pathways associated with myostatin signalling, we used real‐time polymerase chain reaction, immunoblotting, luciferase assay, chromatin immunoprecipitation assay, co‐immunoprecipitation, immunofluorescence, primary culture, and confocal microscopy. Serum analysis, physical performance, and immunohistochemistry were performed using our in vivo model.
Results
Metformin induced the expression of myostatin, a key molecule that regulates muscle volume and triggers the phosphorylation of AMPK. AMPK alpha2 knockdown in the background of metformin treatment reduced the myostatin expression of C2C12 myotubes (−49.86 ± 12.03%, P |
---|---|
ISSN: | 2190-5991 2190-6009 |
DOI: | 10.1002/jcsm.12833 |