The Role of Large-Scale Data Infrastructure in Developing Next-Generation Deep Brain Stimulation Therapies

Advances in neuromodulation technologies hold the promise of treating a patient's unique brain network pathology using personalized stimulation patterns. In service of these goals, neuromodulation clinical trials using sensing-enabled devices are routinely generating large multi-modal datasets....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in human neuroscience 2021-09, Vol.15, p.717401-717401
Hauptverfasser: Chen, Witney, Kirkby, Lowry, Kotzev, Miro, Song, Patrick, Gilron, Ro'ee, Pepin, Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advances in neuromodulation technologies hold the promise of treating a patient's unique brain network pathology using personalized stimulation patterns. In service of these goals, neuromodulation clinical trials using sensing-enabled devices are routinely generating large multi-modal datasets. However, with the expansion of data acquisition also comes an increasing difficulty to store, manage, and analyze the associated datasets, which integrate complex neural and wearable time-series data with dynamic assessments of patients' symptomatic state. Here, we discuss a scalable cloud-based data platform that enables ingestion, aggregation, storage, query, and analysis of multi-modal neurotechnology datasets. This large-scale data infrastructure will accelerate translational neuromodulation research and enable the development and delivery of next-generation deep brain stimulation therapies.
ISSN:1662-5161
1662-5161
DOI:10.3389/fnhum.2021.717401