A Sparsity-Invariant Model via Unifying Depth Prediction and Completion

The development of a sparse-invariant depth completion model capable of handling varying levels of input depth sparsity is highly desirable in real-world applications. However, existing sparse-invariant models tend to degrade when the input depth points are extremely sparse. In this paper, we propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithms 2024-07, Vol.17 (7), p.298
Hauptverfasser: Wang, Shuling, Jiang, Fengze, Gong, Xiaojin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of a sparse-invariant depth completion model capable of handling varying levels of input depth sparsity is highly desirable in real-world applications. However, existing sparse-invariant models tend to degrade when the input depth points are extremely sparse. In this paper, we propose a new model that combines the advantageous designs of depth completion and monocular depth estimation tasks to achieve sparse invariance. Specifically, we construct a dual-branch architecture with one branch dedicated to depth prediction and the other to depth completion. Additionally, we integrate the multi-scale local planar module in the decoders of both branches. Experimental results on the NYU Depth V2 benchmark and the OPPO prototype dataset equipped with the Spot-iToF316 sensor demonstrate that our model achieves reliable results even in cases with irregularly distributed, limited or absent depth information.
ISSN:1999-4893
1999-4893
DOI:10.3390/a17070298