The near-global ocean mesoscale eddy atmospheric-oceanic-biological interaction observational dataset
Amongst the variety of oceanic processes running the gamut of spatiotemporal scales, mesoscale eddies are the most common and often have region-specific characteristics. The large kinetic energy inherent to eddies themselves is a strong modulator of the global climate, ocean circulation, productivit...
Gespeichert in:
Veröffentlicht in: | Scientific data 2022-07, Vol.9 (1), p.436-436, Article 436 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Amongst the variety of oceanic processes running the gamut of spatiotemporal scales, mesoscale eddies are the most common and often have region-specific characteristics. The large kinetic energy inherent to eddies themselves is a strong modulator of the global climate, ocean circulation, productivity, and freshwater transport. This study uses multi-source satellite remote sensing observation data to construct a multi-parameter eddy dataset for the 1993–2019 period, which differs significantly from a few of previous published eddy datasets that include only basic sea surface eddy physical features. Eddies within the dataset have life cycles of greater than four weeks, and their corresponding sea surface chlorophyll, sea surface temperature, and wind fields are provided. Atmospheric and oceanic variables are used to present a comprehensive picture of a given mesoscale eddy’s impact on the local physical, but also biological environment. The dataset would find immense value in research on mesoscale eddies, their impact on the atmosphere, and related biological processes.
Measurement(s)
mesoscale eddy • chlorophyll • thermohaline profile
Technology Type(s)
remote sensing • argo float |
---|---|
ISSN: | 2052-4463 2052-4463 |
DOI: | 10.1038/s41597-022-01550-9 |