Noncrossing partitions, toggles, and homomesy

We introduce n(n − 1)/2 natural involutions (“toggles”) on the set S of noncrossing partitions π of size n, along with certain composite operations obtained by composing these involutions. We show that for many operations T of this kind, a surprisingly large family of functions f on S (including the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics and theoretical computer science 2020-04, Vol.DMTCS Proceedings, 28th...
Hauptverfasser: Einstein, David, Farber, Miriam, Gunawan, Emily, Joseph, Michael, Macauley, Matthew, Propp, James, Rubinstein-Salzedo, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce n(n − 1)/2 natural involutions (“toggles”) on the set S of noncrossing partitions π of size n, along with certain composite operations obtained by composing these involutions. We show that for many operations T of this kind, a surprisingly large family of functions f on S (including the function that sends π to the number of blocks of π) exhibits the homomesy phenomenon: the average of f over the elements of a T -orbit is the same for all T -orbits. Our methods apply more broadly to toggle operations on independent sets of certain graphs.
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.6378