Display Field Communication: Enabling Seamless Data Exchange in Screen–Camera Environments

Display field communication (DFC) is an emerging technology that enables seamless communication between electronic displays and cameras. It utilizes the frequency-domain characteristics of image frames to embed and transmit data, which are then decoded and interpreted by a camera. DFC offers a novel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photonics 2024-11, Vol.11 (11), p.1000
Hauptverfasser: Singh, Pankaj, Kim, Yu-Jeong, Kim, Byung Wook, Jung, Sung-Yoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Display field communication (DFC) is an emerging technology that enables seamless communication between electronic displays and cameras. It utilizes the frequency-domain characteristics of image frames to embed and transmit data, which are then decoded and interpreted by a camera. DFC offers a novel solution for screen-to-camera data communication, leveraging existing displays and camera infrastructures. This makes it a cost-effective and easily deployable solution. DFC can be applied in various fields, including secure data transfer, mobile payments, and interactive advertising, where data can be exchanged by simply pointing a camera at a screen. This article provides a comprehensive survey of DFC, highlighting significant milestones achieved in recent years and discussing future challenges in establishing a fully functional DFC system. We begin by introducing the broader topic of screen–camera communication (SCC), classifying it into visible and hidden SCC. DFC, a type of spectral-domain hidden SCC, is then explored in detail. Various DFC variants are introduced, with a focus on the physical layer. Finally, we present promising experimental results from our lab and outline further research directions and challenges.
ISSN:2304-6732
2304-6732
DOI:10.3390/photonics11111000