Rearrangement of N-Terminal α-Helices of Bacillus thuringiensis Cry1Ab Toxin Essential for Oligomer Assembly and Toxicity

Cry proteins produced by are pore-forming toxins that disrupt the membrane integrity of insect midgut cells. The structure of such pore is unknown, but it has been shown that domain I is responsible for oligomerization, membrane insertion and pore formation activity. Specifically, it was proposed th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxins 2020-10, Vol.12 (10), p.647
Hauptverfasser: Pacheco, Sabino, Quiliche, Jean Piere Jesus, Gómez, Isabel, Sánchez, Jorge, Soberón, Mario, Bravo, Alejandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cry proteins produced by are pore-forming toxins that disrupt the membrane integrity of insect midgut cells. The structure of such pore is unknown, but it has been shown that domain I is responsible for oligomerization, membrane insertion and pore formation activity. Specifically, it was proposed that some N-terminal α-helices are lost, leading to conformational changes that trigger oligomerization. We designed a series of mutants to further analyze the molecular rearrangements at the N-terminal region of Cry1Ab toxin that lead to oligomer assembly. For this purpose, we introduced Cys residues at specific positions within α-helices of domain I for their specific labeling with extrinsic fluorophores to perform Föster resonance energy transfer analysis to fluorescent labeled Lys residues located in Domains II-III, or for disulfide bridges formation to restrict mobility of conformational changes. Our data support that helix α-1 of domain I is cleaved out and swings away from the toxin core upon binding with brush border membrane vesicles. That movement of helix α-2b is also required for the conformational changes involved in oligomerization. These observations are consistent with a model proposing that helices α-2b and α-3 form an extended helix α-3 necessary for oligomer assembly of Cry toxins.
ISSN:2072-6651
2072-6651
DOI:10.3390/toxins12100647