Weighted composite asymmetric Huber estimation for partial functional linear models

In this paper, we first investigate a new asymmetric Huber regression (AHR) estimation procedure to analyze skewed data with partial functional linear models. To automatically reflect distributional features as well as bound the influence of outliers effectively, we further propose a weighted compos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS Mathematics 2022-01, Vol.7 (5), p.7657-7684
Hauptverfasser: Xiao, Juxia, Yu, Ping, Zhang, Zhongzhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we first investigate a new asymmetric Huber regression (AHR) estimation procedure to analyze skewed data with partial functional linear models. To automatically reflect distributional features as well as bound the influence of outliers effectively, we further propose a weighted composite asymmetric Huber regression (WCAHR) estimation procedure by combining the strength across multiple asymmetric Huber loss functions. The slope function and constant coefficients are estimated through minimizing the combined loss function and approximating the slope function with principal component analysis. The asymptotic properties of the proposed estimators are derived. To realize the WCAHR estimation, we also develop a practical algorithm based on pseudo data. Numerical results show that the proposed WCAHR estimators can well adapt to the different error distributions, and thus are more useful in practice. Two real data examples are presented to illustrate the applications of the proposed methods.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2022430