Large composite fermion effective mass at filling factor 5/2

The 5/2 fractional quantum Hall effect in the second Landau level of extremely clean two-dimensional electron gases has attracted much attention due to its topological order predicted to host quasiparticles that obey non-Abelian quantum statistics and could serve as a basis for fault-tolerant quantu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-11, Vol.14 (1), p.7250-7250, Article 7250
Hauptverfasser: Petrescu, M., Berkson-Korenberg, Z., Vijayakrishnan, Sujatha, West, K. W., Pfeiffer, L. N., Gervais, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The 5/2 fractional quantum Hall effect in the second Landau level of extremely clean two-dimensional electron gases has attracted much attention due to its topological order predicted to host quasiparticles that obey non-Abelian quantum statistics and could serve as a basis for fault-tolerant quantum computations. While previous works have establish the Fermi liquid (FL) nature of its putative composite fermion (CF) normal phase, little is known regarding its thermodynamics properties and as a result its effective mass is entirely unknown. Here, we report on time-resolved specific heat measurements at filling factor 5/2, and we examine the ratio of specific heat to temperature as a function of temperature. Combining these specific heat data with existing longitudinal thermopower data measuring the entropy in the clean limit we find that, unless a phase transition/crossover gives rise to large specific heat anomaly, both datasets point towards a large effective mass in the FL phase of CFs at 5/2. We estimate the effective-to-bare mass ratio m * / m e to be ranging from ~ 2 to 4, which is two to three times larger than previously measured values in the first Landau level. The fractional quantum Hall state at the filling factor 5/2 has been intensively studied due to its predicted non-Abelian statistics. Petrescu et al. measure the composite fermion effective mass of this state and find that it is several times larger than that in the half-filled lowest Landau level.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-42986-w