Multiple SSO Space Debris Flyby Trajectory Design Based on Cislunar Orbit

This paper investigates the trajectory design problem in the scenario of a multiple Sun-synchronous Orbit (SSO) space debris flyby mission from a DRO space station. At first, the characteristics of non-planar transfer from DRO to SSO in the Earth–Moon system are analyzed. The methods of large-scale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Universe (Basel) 2024-03, Vol.10 (3), p.145
Hauptverfasser: Zhang, Siyang, Wang, Shuquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the trajectory design problem in the scenario of a multiple Sun-synchronous Orbit (SSO) space debris flyby mission from a DRO space station. At first, the characteristics of non-planar transfer from DRO to SSO in the Earth–Moon system are analyzed. The methods of large-scale ergodicity and pruning are utilized to investigate single-impulse and two-impulse DRO–Earth transfers. Using a powered lunar flyby, the two-impulse DRO–Earth transfer is able to fly by SSO debris while satisfying the requirements of the mission. After the local optimization, the optimal result of two-impulse DRO–Earth transfer and flyby is obtained. A multi-objective evolutionary algorithm is used to design the Pareto-optimal trajectories of multiple flybys. The semi-analytical optimization method is developed to provide the estimations of the transfer parameters in order to reduce the computations caused by the evolutionary algorithm. Simulations show that transferring from the 3:2 resonant DRO to a near-coplanar flyby of a SSO target debris using a powered lunar gravity assist needs a 0.47 km/s velocity increment. The mission’s total velocity increment is 1.39 km/s, and the total transfer time is 2.23 years.
ISSN:2218-1997
2218-1997
DOI:10.3390/universe10030145