Prediction of lithium-ion battery SOC based on the fusion of MHA and ConvolGRU

If the charging state of the lithium-ion battery can be accurately predicted, overcharge and overdischarge of the battery can be avoided, and the service life of the battery can be improved. In order to improve the prediction accuracy of SOC, a prediction method combined with convolutional layer, mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-10, Vol.13 (1), p.16543-16543, Article 16543
Hauptverfasser: Tang, Pei, Hua, Jusen, Wang, Pengchen, QU, Zhonghui, Jiang, Minnan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:If the charging state of the lithium-ion battery can be accurately predicted, overcharge and overdischarge of the battery can be avoided, and the service life of the battery can be improved. In order to improve the prediction accuracy of SOC, a prediction method combined with convolutional layer, multi-head attention mechanism and gated cycle unit is proposed to extract data feature information from different dimensions of space and time. Using the data set of the University of Maryland, we simulated the battery in real vehicle operating conditions at different temperatures (0 °C, 25 °C, 45 °C). The test results showed that the mean absolute error, root mean square error and maximum prediction error of the model were 0.53%, 0.67% and 0.4% respectively. The results show that the model can predict SOC accurately. At the same time, the comparison with other prediction models shows that the prediction accuracy of this model is the highest.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-43858-5