Temperature Evaluation of Cladding Beads and the Surrounding Area during the Laser Metal Deposition Process

Cracks usually generate during the formation of beads composed of a WC-12mass%Co cemented carbide by the laser metal deposition (LMD). Measuring temperatures of the formed bead and substrate during the LMD process is important for realizing crack-free beads. In this study, temperatures of the substr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Manufacturing and Materials Processing 2023-12, Vol.7 (6), p.192
Hauptverfasser: Yamashita, Yorihiro, Ilman, Kholqillah Ardhian, Kunimine, Takahiro, Sato, Yuji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cracks usually generate during the formation of beads composed of a WC-12mass%Co cemented carbide by the laser metal deposition (LMD). Measuring temperatures of the formed bead and substrate during the LMD process is important for realizing crack-free beads. In this study, temperatures of the substrate around the formed bead during the LMD process were measured using a thermoviewer. Temperatures of the formed beads during the LMD process were predicted by simulation based on the thermal conduction analysis using the experimentally measured temperatures of the substrate. The experimental results obtained during forming the WC-12mass%Co cemented carbide beads on JIS SKH51 (ISO HS-6-5-2) substrates showed that the maximal temperatures of the substrates at 0.2 mm away from the center of the formed beads ranged from 229 °C to 341 °C at laser powers ranging from 80 W to 160 W. The predicted maximal temperatures of the formed beads were in the range of 2433 °C to 4491 °C in the simulation using a laser absorption coefficient of 0.35 for the substrate. Validity of these simulation results was discussed based on the melting point of the substrate and microstructures of the formed WC-12mass%Co cemented carbide beads.
ISSN:2504-4494
2504-4494
DOI:10.3390/jmmp7060192