Stability and Hopf-Bifurcating Periodic Solution for Delayed Hopfield Neural Networks with n Neuron
We consider a system of delay differential equations which represents the general model of a Hopfield neural networks type. We construct some new sufficient conditions for local asymptotic stability about the trivial equilibrium based on the connection weights and delays of the neural system. We als...
Gespeichert in:
Veröffentlicht in: | Journal of Applied Mathematics 2014-01, Vol.2014 (2014), p.35-44-603 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a system of delay differential equations which represents the general model of a Hopfield neural networks type. We construct some new sufficient conditions for local asymptotic stability about the trivial equilibrium based on the connection weights and delays of the neural system. We also investigate the occurrence of an Andronov-Hopf bifurcation about the trivial equilibrium. Finally, the simulating results demonstrate the validity and feasibility of our theoretical results. |
---|---|
ISSN: | 1110-757X 1687-0042 |
DOI: | 10.1155/2014/628637 |