Stability and Hopf-Bifurcating Periodic Solution for Delayed Hopfield Neural Networks with n Neuron

We consider a system of delay differential equations which represents the general model of a Hopfield neural networks type. We construct some new sufficient conditions for local asymptotic stability about the trivial equilibrium based on the connection weights and delays of the neural system. We als...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Mathematics 2014-01, Vol.2014 (2014), p.35-44-603
Hauptverfasser: Mohammadinejad, Haji Mohammad, Moslehi, Mohammad Hadi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a system of delay differential equations which represents the general model of a Hopfield neural networks type. We construct some new sufficient conditions for local asymptotic stability about the trivial equilibrium based on the connection weights and delays of the neural system. We also investigate the occurrence of an Andronov-Hopf bifurcation about the trivial equilibrium. Finally, the simulating results demonstrate the validity and feasibility of our theoretical results.
ISSN:1110-757X
1687-0042
DOI:10.1155/2014/628637