Central interaction between nitric oxide, lactate and glial cells to modulate water and sodium intake in rats
The "astrocyte-to-neuron lactate shuttle" (ANLS) mechanism is part of the central inhibitory pathway to modulate sodium intake. An interaction between the GABAergic neurons and nitric oxide (NO) in the subfornical organ (SFO) in salt-appetite inhibition has been suggested. In addition, NO...
Gespeichert in:
Veröffentlicht in: | Brain research bulletin 2022-08, Vol.186, p.1-7 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The "astrocyte-to-neuron lactate shuttle" (ANLS) mechanism is part of the central inhibitory pathway to modulate sodium intake. An interaction between the GABAergic neurons and nitric oxide (NO) in the subfornical organ (SFO) in salt-appetite inhibition has been suggested. In addition, NO is a key molecule involved in astrocytic energy metabolism and lactate production. In the present study, we hypothesized there is an interaction between astrocytic lactate and central NO to negatively modulate water and sodium intake through the ANLS mechanism. The results showed that central Nω-nitro-L-arginine methyl ester (L-NAME, NO-synthase inhibition) induced an increase in water and sodium intake. These responses were attenuated by previous central microinjection of fluorocitrate (FCt, a reversible glial inhibitor). Interestingly, L-NAME-induced water and sodium intake were also decreased by previous microinjection of lactate but did not change after inhibition of the ANLS mechanism by α-cyano 4-hydroxycinnamic acid (α-CHCA), an inhibitor of the MCT lactate transporter. Our results suggest a central interaction between NO, glial cells, and lactate to modulate water and sodium intake.
[Display omitted]
•Glial cells and central lactate modulate sodium intake.•Lactate inhibits sodium intake induced by L-NAME.•There is a central interaction between lactate and NO to modulate drinking behavior. |
---|---|
ISSN: | 0361-9230 1873-2747 |
DOI: | 10.1016/j.brainresbull.2022.04.011 |