Finite groups of the same type as Suzuki groups

‎For a finite group $G$ and a positive integer $n$‎, ‎let $G(n)$ be the set of all elements in $G$ such that $x^{n}=1$‎. ‎The groups $G$ and $H$ are said to be of the same (order) type if $|G(n)|=|H(n)|$‎, ‎for all $n$‎. ‎The main aim of this paper is to show that if $G$ is a finite group of the sam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of group theory 2019-03, Vol.8 (1), p.35-42
Hauptverfasser: Seyed Hassan Alavi, Ashraf Daneshkhah, Hosein Parvizi Mosaed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:‎For a finite group $G$ and a positive integer $n$‎, ‎let $G(n)$ be the set of all elements in $G$ such that $x^{n}=1$‎. ‎The groups $G$ and $H$ are said to be of the same (order) type if $|G(n)|=|H(n)|$‎, ‎for all $n$‎. ‎The main aim of this paper is to show that if $G$ is a finite group of the same type as Suzuki groups $Sz(q)$‎, ‎where $q=2^{2m+1}geq 8$‎, ‎then $G$ is isomorphic to $Sz(q)$‎. ‎This addresses to the well-known J‎. ‎G‎. ‎Thompson's problem (1987) for simple groups‎.
ISSN:2251-7650
2251-7669
DOI:10.22108/ijgt.2017.21556