DOA estimation of spectrally overlapped LFM signals based on STFT and Hough transform

Traditional subspace methods which are based on the spatial time-frequency distribution (STFD) matrix have been investigated for direction-of-arrival (DOA) estimation of linear frequency modulation (LFM) signals. However, the DOA estimation performance may degrade substantially when multiple LFM sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EURASIP journal on advances in signal processing 2019-12, Vol.2019 (1), p.1-10, Article 58
Hauptverfasser: Zhang, Xiaofa, Zhang, Weike, Yuan, Ye, Cui, Kaibo, Xie, Tao, Yuan, Naichang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditional subspace methods which are based on the spatial time-frequency distribution (STFD) matrix have been investigated for direction-of-arrival (DOA) estimation of linear frequency modulation (LFM) signals. However, the DOA estimation performance may degrade substantially when multiple LFM signals are spectrally overlapped in time-frequency (TF) domain. In order to solve this problem, this paper proposes single-source TF points selection algorithm based on Hough transform and short-time Fourier transform (STFT). Firstly, the signal intersections in TF domain can be solved based on the Hough transform, and multiple-source TF points around the intersections are removed, so that the single-source TF points set is reserved. Then, based on the Euclidean distance operator, the single-source TF points set belonging to each signal can be obtained according to the property that TF points of the same signal have same eigenvector. Finally, the averaged STFD matrix is constructed for each signal, and DOA estimation is achieved based on multiple signal classification (MUSIC) algorithm. In this way, the proposed algorithm exhibit remarkable superiority in estimation accuracy and angular resolution over the state-of-the-art schemes and can achieve DOA estimation in the underdetermined cases. In addition, the proposed algorithm can still perform DOA estimation when multiple LFM signals intersect at one point. Numerical simulations demonstrate the validity of the proposed method.
ISSN:1687-6180
1687-6172
1687-6180
DOI:10.1186/s13634-019-0654-0