Prediction of Short-Time Cloud Motion Using a Deep-Learning Model

A cloud image can provide significant information, such as precipitation and solar irradiation. Predicting short-time cloud motion from images is the primary means of making intra-hour irradiation forecasts for solar-energy production and is also important for precipitation forecasts. However, it is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmosphere 2020-11, Vol.11 (11), p.1151
Hauptverfasser: Su, Xinyue, Li, Tiejian, An, Chenge, Wang, Guangqian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A cloud image can provide significant information, such as precipitation and solar irradiation. Predicting short-time cloud motion from images is the primary means of making intra-hour irradiation forecasts for solar-energy production and is also important for precipitation forecasts. However, it is very challenging to predict cloud motion (especially nonlinear motion) accurately. Traditional methods of cloud-motion prediction are based on block matching and the linear extrapolation of cloud features; they largely ignore nonstationary processes, such as inversion and deformation, and the boundary conditions of the prediction region. In this paper, the prediction of cloud motion is regarded as a spatiotemporal sequence-forecasting problem, for which an end-to-end deep-learning model is established; both the input and output are spatiotemporal sequences. The model is based on gated recurrent unit (GRU)- recurrent convolutional network (RCN), a variant of the gated recurrent unit (GRU), which has convolutional structures to deal with spatiotemporal features. We further introduce surrounding context into the prediction task. We apply our proposed Multi-GRU-RCN model to FengYun-2G satellite infrared data and compare the results to those of the state-of-the-art method of cloud-motion prediction, the variational optical flow (VOF) method, and two well-known deep-learning models, namely, the convolutional long short-term memory (ConvLSTM) and GRU. The Multi-GRU-RCN model predicts intra-hour cloud motion better than the other methods, with the largest peak signal-to-noise ratio and structural similarity index. The results prove the applicability of the GRU-RCN method for solving the spatiotemporal data prediction problem and indicate the advantages of our model for further applications.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos11111151