Max-EWMA Chart Using Beta and Unit Nadarajah and Haghighi Distributions

The recent industrial revolution is a result of modern technological advancement and industrial improvements require quick detection of assignable causes in a process. This study presents a monitoring scheme for unit interval data assuming beta and unit Nadarajah and Haghighi distributions. To this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematics (Hidawi) 2022, Vol.2022 (1)
Hauptverfasser: Akram, Muhammad Farhan, Ali, Sajid, Shah, Ismail, Muslim Raza, Syed Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The recent industrial revolution is a result of modern technological advancement and industrial improvements require quick detection of assignable causes in a process. This study presents a monitoring scheme for unit interval data assuming beta and unit Nadarajah and Haghighi distributions. To this end, a maximum exponentially weighted moving average (Max-EWMA) chart is introduced to jointly monitor unit interval bounded time and magnitude data. The performance of the proposed chart is evaluated by using average run length and other characteristics of run length distribution using extensive Monte Carlo simulations. Besides a comprehensive simulation study, a real data set is also used to assess the performance of the chart. The results supplementing the proposed chart are efficient for joint monitoring time and magnitude, and simultaneous shifts are detected more quickly than separate shifts in the process parameters.
ISSN:2314-4629
2314-4785
DOI:10.1155/2022/9374740