Retrieval of Suspended Particulate Matter in Inland Waters with Widely Differing Optical Properties Using a Semi-Analytical Scheme
Suspended particulate matter (SPM) directly affects the underwater light field and, as a consequence, changes the water clarity and can reduce the primary production. Remote sensing-based bio-optical modeling can provide efficient monitoring of the spatiotemporal dynamics of SPM in inland waters. In...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2019-10, Vol.11 (19), p.2283 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Suspended particulate matter (SPM) directly affects the underwater light field and, as a consequence, changes the water clarity and can reduce the primary production. Remote sensing-based bio-optical modeling can provide efficient monitoring of the spatiotemporal dynamics of SPM in inland waters. In this paper, we present a novel and robust bio-optical model to retrieve SPM concentrations for inland waters with widely differing optical properties (the Tietê River Cascade System (TRCS) in Brazil). In this system, high levels of Chl-a concentration of up to 700 mg/m3, turbidity up to 80 NTU and high CDOM absorption highly complicate the optical characteristics of the surface water, imposing an additional challenge in retrieving SPM concentration. Since Kd is not susceptible to the saturation issue encountered when using remote sensing reflectance (Rrs), we estimate SPM concentrations via Kd. Kd was derived analytically from inherent optical properties (IOPs) retrieved through a re-parameterized quasi-analytical algorithm (QAA) that yields relevant accuracy. Our model improved the estimates of the IOPs by up to 30% when compared to other existing QAAs. Our developed bio-optical model using Kd(655) was capable of describing 74% of SPM variations in the TRCS, with average error consistently lower than 30%. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs11192283 |