LEPF-Net: Light Enhancement Pixel Fusion Network for Underwater Image Enhancement

Underwater images often suffer from degradation due to scattering and absorption. With the development of artificial intelligence, fully supervised learning-based models have been widely adopted to solve this problem. However, the enhancement performance is susceptible to the quality of the referenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of marine science and engineering 2023-06, Vol.11 (6), p.1195
Hauptverfasser: Yan, Jiaquan, Wang, Yijian, Fan, Haoyi, Huang, Jiayan, Grau, Antoni, Wang, Chuansheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Underwater images often suffer from degradation due to scattering and absorption. With the development of artificial intelligence, fully supervised learning-based models have been widely adopted to solve this problem. However, the enhancement performance is susceptible to the quality of the reference images, which is more pronounced in underwater image enhancement tasks because the ground truths are not available. In this paper, we propose a light-enhanced pixel fusion network (LEPF-Net) to solve this problem. Specifically, we first introduce a novel light enhancement block (LEB) based on the residual block (RB) and the light enhancement curve (LE-Curve) to restore the cast color of the images. The RB is adopted to learn and obtain the feature maps from an original input image, and the LE-Curve is used to renovate the color cast of the learned images. To realize the superb detail of the repaired images, which is superior to the reference images, we develop a pixel fusion subnetwork (PF-SubNet) that adopts a pixel attention mechanism (PAM) to eliminate noise from the underwater image. The PAM adapts weight allocation to different levels of a feature map, which leads to an enhancement in the visibility of severely degraded areas. The experimental results show that the proposed LEPF-Net outperforms most of the existing underwater image enhancement methods. Furthermore, among the five classic no-reference image quality assessment (NRIQA) indicators, the enhanced images obtained by LEPF-Net are of higher quality than the ground truths from the UIEB dataset.
ISSN:2077-1312
2077-1312
DOI:10.3390/jmse11061195