Modeling the Effects of Irrigation and Its Interaction with Silicon on Quinoa Seed Yield and Water Use Efficiency in Arid Regions

Despite quinoa (Chenopodium quinoa Willd.) gaining international popularity in the early 21st century for its nutritional benefits, there remains a critical need to optimize its cultivation practices in arid regions. Current research often overlooks the combined effects of supplemental irrigation an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agronomy (Basel) 2024-09, Vol.14 (9), p.2088
Hauptverfasser: El-Tahan, Amira M., Emran, Mohamed, Safhi, Fatmah A., Wali, Asal M., Sobhy, Sherien E., Ibrahim, Omar M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite quinoa (Chenopodium quinoa Willd.) gaining international popularity in the early 21st century for its nutritional benefits, there remains a critical need to optimize its cultivation practices in arid regions. Current research often overlooks the combined effects of supplemental irrigation and foliar treatments on quinoa’s yield and water efficiency, particularly under challenging environmental conditions like those in Borg El-Arab, Egypt. Field studies were conducted in Borg El-Arab, Alexandria, Egypt, during the winter seasons of 2021/2022 and 2022/2023 to determine the influence of supplemental irrigation (rainfed, 2000, and 4000 m3/hectare, respectively) and foliar spraying of sodium silicate (control, 200, and 400 ppm) on yield, yield components, seed quality, and water usage efficiency in quinoa cv. Chibaya grown in arid lands. Three replications were used in a split-plot design. The main plots were designated for irrigation, while the subplots were designated for foliar spraying. The results indicate that applying irrigation at a rate of 4000 m3/hectare significantly increased leaf dry weight per plant by 23.5%, stem dry weight per plant by 18.7%, total dry weight per 25 plants by 21.4%, leaf area per plant by 19.2%, and straw yield by 26.8% compared to the control treatment. There were no significant differences between irrigation with the rate of 4000 m3 or 2000 m3/hectare on biological yield kg/hectare, N (%), P (mg/100 g), and protein (%). The utilization of sodium silicate had no significance on all studied features except for straw yield kg ha−1 at the rate of 200 or 400 ppm. The results regarding the RAPD1 primer revealed that the 2000+0 silicon treatment was the only treatment that resemble the control with no up- or downregulated fragment. Moreover, 20 upregulated fragments were observed in all treatments, while 19 DNA fragments were downregulated. Furthermore, the results obtained regarding the RAPD2 primer revealed that 53 fragments were upregulated and 19 downregulated. Additionally, the RAPD3 primer demonstrated that 40 DNA fragments were upregulated, whereas 18 downregulated DNA fragments were detected. It may be inferred that the application of irrigation at a rate of 4000 m3 ha−1 might serve as a supplemental irrigation method. Spraying sodium silicate at a 400 mg L−1 concentration could alleviate the dry climate on the Egyptian shore.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy14092088