Adaptive Dead Zone Compensation Control Method for Electro-Hydrostatic Actuators Under Low-Speed Conditions

This study proposes an accurate dead zone compensation control method for electro-hydrostatic actuators (EHAs) under low-speed conditions. Specifically, the nonlinear dead zone characteristics under low-speed conditions are summarized based on numerous EHA experiments. An adaptive compensation funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of mechanical engineering 2024-12, Vol.37 (1), p.168-13, Article 168
Hauptverfasser: Jiang, Haoyi, Ling, Zhenfei, Zhou, Fengqi, Sun, Maowen, Liu, Hao, Xu, Lilin, Yao, Yeming, Ouyang, Xiaoping, Yang, Huayong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study proposes an accurate dead zone compensation control method for electro-hydrostatic actuators (EHAs) under low-speed conditions. Specifically, the nonlinear dead zone characteristics under low-speed conditions are summarized based on numerous EHA experiments. An adaptive compensation function (ACF) is then constructed for the dead zone. Next, this study proposes an adaptive dead zone compensation control method for EHAs by integrating the ACF with a virtual decomposition controller (VDC) based on the established EHA model. The stability of the proposed control method is also proven. Finally, the proposed control method is verified using an EHA platform. The test results show that the dead zone trajectory tracking errors of EHAs are significantly reduced when combined with the ACF. Furthermore, since most EHAs are controlled by adjusting the motor speed, the method presented in this study is simpler and easier to use than methods that employ flow compensation.
ISSN:2192-8258
1000-9345
2192-8258
DOI:10.1186/s10033-024-01125-2