Metal organic framework supported niobium pentoxide nanoparticles with exceptional catalytic effect on hydrogen storage behavior of MgH2
Nb2O5 nanoparticles with an average particle size of 10 nm supported on a rhombic dodecahedral metal organic framework (MOF) were successfully synthesized by a facile one-pot hydrothermal reaction and subsequent calcination process. Experimental results demonstrated that the prepared catalyst drasti...
Gespeichert in:
Veröffentlicht in: | Green energy & environment 2023-04, Vol.8 (2), p.589-600 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nb2O5 nanoparticles with an average particle size of 10 nm supported on a rhombic dodecahedral metal organic framework (MOF) were successfully synthesized by a facile one-pot hydrothermal reaction and subsequent calcination process. Experimental results demonstrated that the prepared catalyst drastically improved the hydrogen storage behavior of MgH2. 7 wt% Nb2O5@MOF doped MgH2 started to desorb hydrogen at 181.9 °C and 6.2 wt% hydrogen could be released within 2.6 min and 6.3 min at 275 °C and 250 °C, respectively. The fully dehydrogenated composite also displayed excellent hydrogenation by decreasing the onset absorption temperature to 25 °C and taking up 4.9 wt% and 6.5 wt% hydrogen within 6 min at 175 °C and 150 °C, respectively. Moreover, the corresponding activation energy was calculated to be 75.57 ± 4.16 kJ mol−1 for desorption reaction and 51.38 ± 1.09 kJ mol−1 for absorption reaction. After 20 cycles, 0.5 wt% hydrogen capacity was lost for the MgH2+7 wt% Nb2O5@MOF composite, much lower than 1.5 wt% of the MgH2+7 wt% Nb2O5 composite. However, the addition of Nb2O5@MOF had limited effect on reducing the dehydrogenation enthalpy of MgH2. Microstructure analysis revealed that Nb2O5 particles were uniformly distributed on surface of the MgH2 matrix and synergistically improved the hydrogen storage property of MgH2 with MOF.
The uniformly distributed Nb2O5 and MOF synergistically enhanced the dehydrogenation performance of MgH2. [Display omitted]
•Nb2O5@MOF particles were synthesized by a facile one pot hydrothermal reaction and subsequent calcination process.•The de/hydrogenation temperatures of modified MgH2 were significantly reduced.•93.4% hydrogen storage capacity of modified MgH2 was maintained after 20 cycles.•The uniformly distributed Nb2O5 and MOF synergistically improved the hydrogen storage property of MgH2. |
---|---|
ISSN: | 2468-0257 2096-2797 2468-0257 |
DOI: | 10.1016/j.gee.2021.09.004 |