Preparation of a Low-Protein-Fouling and High-Protein-Retention Membrane via Novel Pre-Hydrolysis Treatment of Polyacrylonitrile (PAN)

The attainment of high-protein-retention and low-protein-fouling membranes is crucial for industries that necessitate protein production or separation process. The present study aimed to develop a novel method for preparing polyacrylonitrile (PAN) membranes possessing a highly hydrophilic and negati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Membranes (Basel) 2023-03, Vol.13 (3), p.310
Hauptverfasser: Xu, Dong, Pan, Guangyao, Ge, Yutong, Yang, Xuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The attainment of high-protein-retention and low-protein-fouling membranes is crucial for industries that necessitate protein production or separation process. The present study aimed to develop a novel method for preparing polyacrylonitrile (PAN) membranes possessing a highly hydrophilic and negatively charged surface as well as interior structure. The method involved a pre-hydrolysis treatment during the preparation of the PAN dope solution, followed by phase inversion in an alkaline solution. Chemical and material characterization of the dopes and membranes uncovered that the cyclized PAN structure served as a reaction intermediate that facilitated strong hydrolysis effect during phase inversion and homogeneously formed carboxyl groups in the membrane's interior structure. The resulting membrane showed a highly hydrophilic surface with a contact angle of 12.4° and demonstrated less than 21% flux decay and more than 95% flux recovery during multi-cycle filtration of bovine serum albumin (BSA) solution, with a high protein rejection rate of 96%. This study offers a facile and effective alternative for preparing PAN membranes with enhanced antifouling and protein-retention properties.
ISSN:2077-0375
2077-0375
DOI:10.3390/membranes13030310