Stability of Ulam–Hyers and Ulam–Hyers–Rassias for a class of fractional differential equations

In this paper, we investigate a class of nonlinear fractional differential equations with integral boundary condition. By means of Krasnosel’skiĭ fixed point theorem and contraction mapping principle we prove the existence and uniqueness of solutions for a nonlinear system. By means of Bielecki-type...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2020-03, Vol.2020 (1), p.1-15, Article 103
Hauptverfasser: Dai, Qun, Gao, Ruimei, Li, Zhe, Wang, Changjia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate a class of nonlinear fractional differential equations with integral boundary condition. By means of Krasnosel’skiĭ fixed point theorem and contraction mapping principle we prove the existence and uniqueness of solutions for a nonlinear system. By means of Bielecki-type metric and the Banach fixed point theorem we investigate the Ulam–Hyers and Ulam–Hyers–Rassias stability of nonlinear fractional differential equations. Besides, we discuss an example for illustration of the main work.
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-020-02558-4