Removable Singularities of Harmonic Functions on Stratified Sets

There are deep historical connections between symmetry, harmonic functions, and stratified sets. In this article, we prove an analog of the removable singularity theorem for bounded harmonic functions on stratified sets. The harmonic functions are understood in the sense of the soft Laplacian. The r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2024-04, Vol.16 (4), p.486
Hauptverfasser: Dairbekov, Nurlan S., Penkin, Oleg M., Savasteev, Denis V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There are deep historical connections between symmetry, harmonic functions, and stratified sets. In this article, we prove an analog of the removable singularity theorem for bounded harmonic functions on stratified sets. The harmonic functions are understood in the sense of the soft Laplacian. The result can become one of the main technical components for extending the well-known Poincaré–Perron’s method of proving the solvability of the Dirichlet problem for the soft Laplacian.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym16040486