Removable Singularities of Harmonic Functions on Stratified Sets
There are deep historical connections between symmetry, harmonic functions, and stratified sets. In this article, we prove an analog of the removable singularity theorem for bounded harmonic functions on stratified sets. The harmonic functions are understood in the sense of the soft Laplacian. The r...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2024-04, Vol.16 (4), p.486 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There are deep historical connections between symmetry, harmonic functions, and stratified sets. In this article, we prove an analog of the removable singularity theorem for bounded harmonic functions on stratified sets. The harmonic functions are understood in the sense of the soft Laplacian. The result can become one of the main technical components for extending the well-known Poincaré–Perron’s method of proving the solvability of the Dirichlet problem for the soft Laplacian. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym16040486 |