F-Box Family Genes, LTSF1 and LTSF2, Regulate Low-Temperature Stress Tolerance in Pepper (Capsicum chinense)
The F-box proteins belong to a family of regulatory proteins that play key roles in the proteasomal degradation of other proteins. Plant F-box proteins are functionally diverse, and the precise roles of many such proteins in growth and development are not known. Previously, two low-temperature-sensi...
Gespeichert in:
Veröffentlicht in: | Plants (Basel) 2020-09, Vol.9 (9), p.1186 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The F-box proteins belong to a family of regulatory proteins that play key roles in the proteasomal degradation of other proteins. Plant F-box proteins are functionally diverse, and the precise roles of many such proteins in growth and development are not known. Previously, two low-temperature-sensitive F-box protein family genes (LTSF1 and LTSF2) were identified as candidates responsible for the sensitivity to low temperatures in the pepper (Capsicum chinense) cultivar ‘sy-2’. In the present study, we showed that the virus-induced gene silencing of these genes stunted plant growth and caused abnormal leaf development under low-temperature conditions, similar to what was observed in the low-temperature-sensitive ‘sy-2’ line. Protein–protein interaction analyses revealed that the LTSF1 and LTSF2 proteins interacted with S-phase kinase-associated protein 1 (SKP1), part of the Skp, Cullin, F-box-containing (SCF) complex that catalyzes the ubiquitination of proteins for degradation, suggesting a role for LTSF1 and LTSF2 in protein degradation. Furthermore, transgenic Nicotiana benthamiana plants overexpressing the pepper LTSF1 gene showed an increased tolerance to low-temperature stress and a higher expression of the genes encoding antioxidant enzymes. Taken together, these results suggest that the LTSF1 and LTSF2 F-box proteins are a functional component of the SCF complex and may positively regulate low-temperature stress tolerance by activating antioxidant-enzyme activities. |
---|---|
ISSN: | 2223-7747 2223-7747 |
DOI: | 10.3390/plants9091186 |