Solving Fuzzy Multiproduct Aggregate Production Planning Problems Based on Extension Principle

Aggregate production planning (APP) plays a critical role in supply chain management (SCM). This paper investigates multiproduct, multiperiod APP problems with several distinct types of fuzzy uncertainties. In contrast to the existing studies, the modelling in this work conserves the fuzziness such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Mathematics and Mathematical Sciences 2014-01, Vol.2014 (2014), p.112-129
Hauptverfasser: Chen, Shih-Pin, Huang, Wen-Lung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aggregate production planning (APP) plays a critical role in supply chain management (SCM). This paper investigates multiproduct, multiperiod APP problems with several distinct types of fuzzy uncertainties. In contrast to the existing studies, the modelling in this work conserves the fuzziness such that the obtained APP is more effective. Based on Zadeh’s extension principle, the results obtained are fuzzy solutions described by membership functions, in contrast to results from previous studies. A pair of two-level parametric mathematical programs is formulated to calculate the lower and upper bounds of the optimum fuzzy performance measure. The membership function of the fuzzy total cost is constructed by enumerating various possibility levels. A case studied in previous research is investigated to demonstrate the validity of the proposed model and solution procedure. Because the optimal objective value and associated decision variables are expressed using fuzzy numbers rather than crisp values, the proposed approach is able to represent APP systems more accurately, and therefore, the results obtained can provide decision makers with more effective and informative APPs and more chance to achieve the optimal disaggregate plan.
ISSN:0161-1712
1687-0425
DOI:10.1155/2014/207839