Rationale for Nicotinamide Adenine Dinucleotide (NAD+) Metabolome Disruption as a Pathogenic Mechanism of Post-Acute COVID-19 Syndrome

Many acute COVID-19 convalescents experience a persistent sequelae of infection, called post-acute COVID-19 syndrome (PACS). With incidence ranging between 31% and 69%, PACS is becoming increasingly acknowledged as a new disease state in the context of SARS-CoV-2 infection. As SARS-CoV-2 infection c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical pathology (Thousand Oaks, Ventura County, Calif.) Ventura County, Calif.), 2022-01, Vol.15, p.2632010X221106986-2632010X221106986
Hauptverfasser: Block, Tabitha, Kuo, Jonathann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many acute COVID-19 convalescents experience a persistent sequelae of infection, called post-acute COVID-19 syndrome (PACS). With incidence ranging between 31% and 69%, PACS is becoming increasingly acknowledged as a new disease state in the context of SARS-CoV-2 infection. As SARS-CoV-2 infection can affect several organ systems to varying degrees and durations, the cellular and molecular abnormalities contributing to PACS pathogenesis remain unclear. Despite our limited understanding of how SARS-CoV-2 infection promotes this persistent disease state, mitochondrial dysfunction has been increasingly recognized as a contributing factor to acute SARS-CoV-2 infection and, more recently, to PACS pathogenesis. The biological mechanisms contributing to this phenomena have not been well established in previous literature; however, in this review, we summarize the evidence that NAD+ metabolome disruption and subsequent mitochondrial dysfunction following SARS-CoV-2 genome integration may contribute to PACS biological pathogenesis. We also briefly examine the coordinated and complex relationship between increased oxidative stress, inflammation, and mitochondrial dysfunction and speculate as to how SARS-CoV-2-mediated NAD+ depletion may be causing these abnormalities in PACS. As such, we present evidence supporting the therapeutic potential of intravenous administration of NAD+ as a novel treatment intervention for PACS symptom management.
ISSN:2632-010X
2632-010X
DOI:10.1177/2632010X221106986