An analytical method for q − fractional dynamical equations on time scales
In this paper, we introduce the delta q−Laplace transform on a time scale and investigate some of its properties. We discuss some important properties of fractional delta q−calculus. Then, based on these properties and the q−Laplace transform, we propose an analytical method for solving a class of l...
Gespeichert in:
Veröffentlicht in: | Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters 2023-12, Vol.8, p.100585, Article 100585 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we introduce the delta q−Laplace transform on a time scale and investigate some of its properties. We discuss some important properties of fractional delta q−calculus. Then, based on these properties and the q−Laplace transform, we propose an analytical method for solving a class of linear Caputo delta fractional dynamic equations (q−FDEs). This method relies on transforming the corresponding equation into an integer-order linear delta q−dynamic equation (q−DE). In fact, this transformation removes certain terms from a solution of the considered linear Caputo delta q−FDE, resulting in residual terms that satisfy the linear delta q−DE. Several examples are provided to demonstrate the effectiveness and efficiency of the proposed method. |
---|---|
ISSN: | 2666-8181 2666-8181 |
DOI: | 10.1016/j.padiff.2023.100585 |