An analytical method for q − fractional dynamical equations on time scales

In this paper, we introduce the delta q−Laplace transform on a time scale and investigate some of its properties. We discuss some important properties of fractional delta q−calculus. Then, based on these properties and the q−Laplace transform, we propose an analytical method for solving a class of l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters 2023-12, Vol.8, p.100585, Article 100585
Hauptverfasser: Mahdi, Nada K., Khudair, Ayad R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce the delta q−Laplace transform on a time scale and investigate some of its properties. We discuss some important properties of fractional delta q−calculus. Then, based on these properties and the q−Laplace transform, we propose an analytical method for solving a class of linear Caputo delta fractional dynamic equations (q−FDEs). This method relies on transforming the corresponding equation into an integer-order linear delta q−dynamic equation (q−DE). In fact, this transformation removes certain terms from a solution of the considered linear Caputo delta q−FDE, resulting in residual terms that satisfy the linear delta q−DE. Several examples are provided to demonstrate the effectiveness and efficiency of the proposed method.
ISSN:2666-8181
2666-8181
DOI:10.1016/j.padiff.2023.100585