Exploring Novel Sensor Design Ideas through Concentration-Induced Conformational Changes in PEG Single Chains

Polyethylene glycol (PEG) is an artificial polymer with good biocompatibility and a low cost, which has a wide range of applications. In this study, the dynamic response of PEG single chains to different ion concentrations was investigated from a microscopic point of view based on single-molecule fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-01, Vol.24 (3), p.883
Hauptverfasser: Yu, Miao, Jiang, Chong, Lai, Bing, Zhang, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polyethylene glycol (PEG) is an artificial polymer with good biocompatibility and a low cost, which has a wide range of applications. In this study, the dynamic response of PEG single chains to different ion concentrations was investigated from a microscopic point of view based on single-molecule force spectroscopy, revealing unique interactions that go beyond the traditional sensor-design paradigm. Under low concentrations of potassium chloride, PEG single chains exhibit a gradual reduction in rigidity, while, conversely, high concentrations induce a progressive increase in rigidity. This dichotomy serves as the cornerstone for a profound understanding of PEG conformational dynamics under diverse ion environments. Capitalizing on the remarkable sensitivity of PEG single chains to ion concentration shifts, we introduce innovative sensor-design ideas. Rooted in the adaptive nature of PEG single chains, these sensor designs extend beyond the traditional applications, promising advancements in environmental monitoring, healthcare, and materials science.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24030883