Ecological Policies Dominated the Ecological Restoration over the Core Regions of Kubuqi Desert in Recent Decades

Climate change and human activities significantly affected environmental changes in drylands. However, the relative roles remain unclear regarding these factors’ effects on environment changes in drylands. Herein, we analyzed vegetation change trends using remote-sensing datasets to determine the in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2022-10, Vol.14 (20), p.5243
Hauptverfasser: Ren, Min, Chen, Wenjiang, Wang, Haibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Climate change and human activities significantly affected environmental changes in drylands. However, the relative roles remain unclear regarding these factors’ effects on environment changes in drylands. Herein, we analyzed vegetation change trends using remote-sensing datasets to determine the interactions of vegetation, climate, and anthropogenic activities in an arid region of China, Kubuqi Desert. Our study showed that 67.64% of the pixels of fractional vegetation coverage (FVC) increased in 2020 in comparison with those of 1986. The FVC exhibited a significant greening trend (0.0011/yr, p < 0.05) in 1986–2020 as a whole. This greening trend revealed two distinct periods separated by a turning point in 2001. There was no clear trend of FVC before 2001, and then there was a dramatically greening trend since 2001 in most regions of the study area. The increasing rate (0.0036/yr) in the later period was three times higher than the entire period. The accelerated increasing trend was due to the variable compound effects of climate and human activities. The correlation between FVC and precipitation was mainly positive, which outweighs the significantly negative correlation between vegetation and temperature. However, both climatic factors cannot well explain the trends of vegetation dynamics, implying a possible role for human activities. Generally, climate change and anthropogenic activities contributed 42.15% and 57.85% to the overall vegetation variations in 1986–2020. Specifically, the relative role of the two factors was vastly different in two distinct periods. Climate change led the dominant roles (58.68%) in the vegetation variations in 1986–2001, while anthropogenic activities dominated (86.79%) in driving vegetation recovery in the period after 2001. Due to the massive ecological conservation programs such as the Grain for Green Project launched in 2001, substantial deserts have been transformed into grasslands and forests. This analysis highlights the ecological policies largely responsible for vegetation restoration and provides references for ecological protection and sustainable development in eco-fragile ecosystems.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14205243