Phase–amplitude model for doubly fed induction generators

The doubly fed induction generator (DFIG) is major type of wind turbine generator used in grid-connected wind farms. Practical models of DFIG have been built to study the influence of wind power generation on power system dynamics. However, most existing practical models of the DFIG are based on rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of modern power systems and clean energy 2019-03, Vol.7 (2), p.369-379
Hauptverfasser: HUANG, Hua, JU, Ping, PAN, Xueping, JIN, Yuqing, YUAN, Xiaoming, GAO, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The doubly fed induction generator (DFIG) is major type of wind turbine generator used in grid-connected wind farms. Practical models of DFIG have been built to study the influence of wind power generation on power system dynamics. However, most existing practical models of the DFIG are based on rectangular coordinates, in which frequency variation is neglected. In this paper, a phase–amplitude (P–A) model is proposed for a DFIG based on phase and amplitude of the internal voltage. The model structure is much like that of the synchronous generator, and the rotor voltage can manipulate both the amplitude and the phase of the internal voltage. Comparisons have been made between the new P–A model of the DFIG and the synchronous generator model, as well as the asynchronous motor model. The contributions of the new P–A model of the DFIG are discussed and it is demonstrated that the proposed model has better ability in describing power system dynamic phenomena such as voltage dynamics and structural dynamics in general. Simulation results and a field test validate these contributions.
ISSN:2196-5625
2196-5420
DOI:10.1007/s40565-018-0450-0