Simultaneous Measurement of Air Pressure and Temperature Using Fiber-Optic Cascaded Fabry-Perot Interferometer

We propose and demonstrate a fiber-optic cascaded-cavity Fabry-Perot interferometer (FPI) for simultaneous measurement of air pressure and temperature. The open-cavity hybrid FPI consists of an air-cavity and a silica-cavity formed by a section of silica tube and photonic crystal fiber, respectively...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics journal 2019-02, Vol.11 (1), p.1-10
Hauptverfasser: Li, Zhigang, Tian, Jiajun, Jiao, Yuzhu, Sun, Yunxu, Yao, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose and demonstrate a fiber-optic cascaded-cavity Fabry-Perot interferometer (FPI) for simultaneous measurement of air pressure and temperature. The open-cavity hybrid FPI consists of an air-cavity and a silica-cavity formed by a section of silica tube and photonic crystal fiber, respectively. The air-cavity and silica-cavity exhibit different sensitivities to air pressure and temperature. Thus, the proposed sensor can be used to implement air pressure and temperature sensing simultaneously. The spectra of the air-cavity and silica-cavity are extracted from the total reflection spectrum with designed bandpass filters. The air pressure and temperature sensitivities of the air-cavity are 4.04 pm/kPa and 0.87 pm/°C, respectively, and those of the silica-cavity are 3.36 pm/kPa and 14.36 pm/°C, respectively. Moreover, the temperature and air pressure cross-sensitivity can be reduced by using a sensitivity coefficients matrix of two cavities. With the advantages of compact size, easy fabrication, and all-fiber structure, the proposed sensor is a potential candidate for practical applications.
ISSN:1943-0655
1943-0647
DOI:10.1109/JPHOT.2018.2884776