Assessment of an NDL-PCBs Sequestration Strategy in Soil Using Contrasted Carbonaceous Materials through In Vitro and Cucurbita pepo Assays

The present study aims to assess the respective efficiency of Biochars (BCs) and activated carbons (ACs) to limit PCB 101, 138, 153 and 180 transfer to plants. A set of 6 high carbon materials comprising 3 BCs and 3 ACs was tested and used to amend a soil at 2% rate. Then, the two most efficient car...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-04, Vol.12 (8), p.3921
Hauptverfasser: Piutti, Severine, El Wanny, Nadine, Laflotte, Alexandre, Baroudi, Moomen, Caria, Giovanni, Perronnet, Karen, Jurjanz, Stefan, Slezack, Sophie, Feidt, Cyril, Delannoy, Matthieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study aims to assess the respective efficiency of Biochars (BCs) and activated carbons (ACs) to limit PCB 101, 138, 153 and 180 transfer to plants. A set of 6 high carbon materials comprising 3 BCs and 3 ACs was tested and used to amend a soil at 2% rate. Then, the two most efficient carbonaceous materials were used as an amendment of an historically contaminated soil sampled in the St Cyprien vicinity (Loire, France). An environmental availability assessment was performed using the ISO/DIS 16751 Part A assay (n = 3). For the in vivo part, Cucurbita pepo were grown for 12 weeks. Significant decreases of transfer were found for both assays notably for powdered ACs (up to 98%). By contrast, significantly lower levels of transfer reduction were observed when BCs amendments were performed, ranging from 27 to 80% for environmental availability assessment and 0 to 36% for C. pepo. Reduction factors above 90% for the 2 selected materials were found from amended historically contaminated soils. Present results led to consider such a sequestering strategy as valuable to ensure plant production on non-dioxin-like polychlorobiphenyls (NDL-PCBs) contaminated soils.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12083921