On weak (σ, δ)-rigid rings over Noetherian rings

Let R be a Noetherian integral domain which is also an algebra over ℚ (ℚ is the field of rational numbers). Let σ be an endo-morphism of R and δ a σ-derivation of R. We recall that a ring R is a weak (σ, δ)-rigid ring if a(σ(a)+ δ(a)) N(R) if and only if a N(R) for a R (N(R) is the set of nilpotent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta universitatis sapientiae. Mathematica 2020-07, Vol.12 (1), p.5-13
Hauptverfasser: Bhat, Vijay Kumar, Singh, Pradeep, Sharma, Sunny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R be a Noetherian integral domain which is also an algebra over ℚ (ℚ is the field of rational numbers). Let σ be an endo-morphism of R and δ a σ-derivation of R. We recall that a ring R is a weak (σ, δ)-rigid ring if a(σ(a)+ δ(a)) N(R) if and only if a N(R) for a R (N(R) is the set of nilpotent elements of R). With this we prove that if R is a Noetherian integral domain which is also an algebra over ℚ, σ an automorphism of R and δ a σ-derivation of R such that R is a weak (σ, δ)-rigid ring, then N(R) is completely semiprime.
ISSN:2066-7752
1844-6094
2066-7752
DOI:10.2478/ausm-2020-0001