On weak (σ, δ)-rigid rings over Noetherian rings
Let R be a Noetherian integral domain which is also an algebra over ℚ (ℚ is the field of rational numbers). Let σ be an endo-morphism of R and δ a σ-derivation of R. We recall that a ring R is a weak (σ, δ)-rigid ring if a(σ(a)+ δ(a)) N(R) if and only if a N(R) for a R (N(R) is the set of nilpotent...
Gespeichert in:
Veröffentlicht in: | Acta universitatis sapientiae. Mathematica 2020-07, Vol.12 (1), p.5-13 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let R be a Noetherian integral domain which is also an algebra over ℚ (ℚ is the field of rational numbers). Let σ be an endo-morphism of R and δ a σ-derivation of R. We recall that a ring R is a weak (σ, δ)-rigid ring if a(σ(a)+ δ(a))
N(R) if and only if a
N(R) for a
R (N(R) is the set of nilpotent elements of R). With this we prove that if R is a Noetherian integral domain which is also an algebra over ℚ, σ an automorphism of R and δ a σ-derivation of R such that R is a weak (σ, δ)-rigid ring, then N(R) is completely semiprime. |
---|---|
ISSN: | 2066-7752 1844-6094 2066-7752 |
DOI: | 10.2478/ausm-2020-0001 |