Improving the efficiency of RMSProp optimizer by utilizing Nestrove in deep learning

There are several methods that have been discovered to improve the performance of Deep Learning (DL). Many of these methods reached the best performance of their models by tuning several parameters such as Transfer Learning, Data augmentation, Dropout, and Batch Normalization, while other selects th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-05, Vol.13 (1), p.8814-8814, Article 8814
Hauptverfasser: Elshamy, Reham, Abu-Elnasr, Osama, Elhoseny, Mohamed, Elmougy, Samir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There are several methods that have been discovered to improve the performance of Deep Learning (DL). Many of these methods reached the best performance of their models by tuning several parameters such as Transfer Learning, Data augmentation, Dropout, and Batch Normalization, while other selects the best optimizer and the best architecture for their model. This paper is mainly concerned with the optimization algorithms in DL. It proposes a modified version of Root Mean Squared Propagation (RMSProp) algorithm, called NRMSProp, to improve the speed of convergence, and to find the minimum of the loss function quicker than the original RMSProp optimizer. Moreover, NRMSProp takes the original algorithm, RMSProp, a step further by using the advantages of Nesterov Accelerated Gradient (NAG). It also takes in consideration the direction of the gradient at the next step, with respect to the history of the previous gradients, and adapts the value of the learning rate. As a result, this modification helps NRMSProp to convergence quicker than the original RMSProp, without any increase in the complexity of the RMSProp. In this work, many experiments had been conducted to evaluate the performance of NRMSProp with performing several tests with deep Convolution Neural Networks (CNNs) using different datasets on RMSProp, Adam, and NRMSProp optimizers. The experimental results showed that NRMSProp has achieved effective performance, and accuracy up to 0.97 in most cases, in comparison to RMSProp and Adam optimizers, without any increase in the complexity of the algorithm and with fine amount of memory and time.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-35663-x