Landslide Displacement Prediction via Attentive Graph Neural Network

Landslides are among the most common geological hazards that result in considerable human and economic losses globally. Researchers have put great efforts into addressing the landslide prediction problem for decades. Previous methods either focus on analyzing the landslide inventory maps obtained fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2022-04, Vol.14 (8), p.1919
Hauptverfasser: Kuang, Ping, Li, Rongfan, Huang, Ying, Wu, Jin, Luo, Xucheng, Zhou, Fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Landslides are among the most common geological hazards that result in considerable human and economic losses globally. Researchers have put great efforts into addressing the landslide prediction problem for decades. Previous methods either focus on analyzing the landslide inventory maps obtained from aerial photography and satellite images or propose machine learning models—trained on historical land deformation data—to predict future displacement and sedimentation. However, existing approaches generally fail to capture complex spatial deformations and their inter-dependencies in different areas. This work presents a novel landslide prediction model based on graph neural networks, which utilizes graph convolutions to aggregate spatial correlations among different monitored locations. Besides, we introduce a novel locally historical transformer network to capture dynamic spatio-temporal relations and predict the surface deformation. We conduct extensive experiments on real-world data and demonstrate that our model significantly outperforms state-of-the-art approaches in terms of prediction accuracy and model interpretations.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14081919