Residual based a posteriori error estimation for Dirichlet boundary control problems

We study a residual–based a posteriori error estimate for the solution of Dirichlet boundary control problem governed by a convection diffusion equation on a two dimensional convex polygonal domain, using the local discontinuous Galerkin (LDG) method with upwinding for the convection term. With the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Proceedings and surveys 2021-08, Vol.71, p.185-195
1. Verfasser: Yücel, Hamdullah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a residual–based a posteriori error estimate for the solution of Dirichlet boundary control problem governed by a convection diffusion equation on a two dimensional convex polygonal domain, using the local discontinuous Galerkin (LDG) method with upwinding for the convection term. With the usage of LDG method, the control variable naturally exists in the variational form due to its mixed finite element structure. We also demonstrate the application of our a posteriori error estimator for the adaptive solution of these optimal control problems.
ISSN:2267-3059
2267-3059
DOI:10.1051/proc/202171185