Machine learning enabled orthogonal camera goniometry for accurate and robust contact angle measurements

Characterization of surface wettability plays an integral role in physical, chemical, and biological processes. However, the conventional fitting algorithms are not suitable for accurate estimation of wetting properties, especially on hydrophilic surfaces, due to optical distortions triggered by cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-01, Vol.13 (1), p.1497-1497, Article 1497
Hauptverfasser: Kabir, Hossein, Garg, Nishant
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Characterization of surface wettability plays an integral role in physical, chemical, and biological processes. However, the conventional fitting algorithms are not suitable for accurate estimation of wetting properties, especially on hydrophilic surfaces, due to optical distortions triggered by changes in the focal length of the moving drops. Therefore, here we present an original setup coupled with Convolutional Neural Networks (CNN) for estimation of Contact Angle (CA). The developed algorithm is trained on 3375 ground truth images (at different front-lit illuminations), less sensitive to the edges of the drops, and retains its stability for images that are synthetically blurred with higher Gaussian Blurring (GB) values (GB: 0–22) if compared to existing goniometers (GB: 0–12). Besides, the proposed technique can precisely analyze drops of various colors and chemistries on different surfaces. Finally, our automated orthogonal camera goniometer has a significantly lower average standard deviation (6.7° vs. 14.6°) and coefficient of variation (14.9 vs. 29.2%) than the existing techniques and enables wettability assessment of non-spherical drops on heterogeneous surfaces.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-28763-1