Hypophosphite/Graphitic Carbon Nitride Hybrids: Preparation and Flame-Retardant Application in Thermoplastic Polyurethane

A series of aluminum hypophosphite (AHPi)/graphite-like carbon nitride (g-C₃N₄) (designated as CAHPi) hybrids were prepared, followed by incorporation into thermoplastic polyurethane (TPU). The introduction of CAHPi hybrids into TPU led to a marked reduction in the peak of the heat release rate (pHR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2017-09, Vol.7 (9), p.259
Hauptverfasser: Shi, Yongqian, Fu, Libi, Chen, Xilei, Guo, Jin, Yang, Fuqiang, Wang, Jingui, Zheng, Yuying, Hu, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of aluminum hypophosphite (AHPi)/graphite-like carbon nitride (g-C₃N₄) (designated as CAHPi) hybrids were prepared, followed by incorporation into thermoplastic polyurethane (TPU). The introduction of CAHPi hybrids into TPU led to a marked reduction in the peak of the heat release rate (pHRR), total heat release, weight loss rate, smoke production rate and total smoke production (TSP). For instance, pHRR and TSP decreased by 40% and 50% for TPU/CAHPi20. Furthermore, the increasing fire growth index and decreasing fire performance index were obtained for TPU/CAHPi systems, suggesting reduced fire hazards. It was found that improved fire safety of TPU nanocomposites was contributed by condensed phase and gas phase mechanisms. On one hand, g-C₃N₄ accelerated the thermal decomposition of AHPi for the formation of more char layers. On the other hand, g-C₃N₄ induced AHPi to generate more free radical capture agents when exposed to flame, besides protecting AHPi against thermal oxidation.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano7090259