Cube: An Open-Source Software for Clock Offset Estimation and Precise Point Positioning with Ambiguity Resolution
Precise point positioning (PPP) is a prevalent, high-precision spatial absolution positioning method, and its performance can be enhanced by ambiguity resolution (AR). To fulfill the growing need for high-precision positioning, we developed an open-source GNSS data processing package based on the de...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2024-08, Vol.16 (15), p.2739 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Precise point positioning (PPP) is a prevalent, high-precision spatial absolution positioning method, and its performance can be enhanced by ambiguity resolution (AR). To fulfill the growing need for high-precision positioning, we developed an open-source GNSS data processing package based on the decoupled clock model called Cube, which integrates decoupled clock offset estimation and precise point positioning with ambiguity resolution (PPP-AR). Cube is a secondary development based on RTKLIB. Besides the decoupled clock model, Cube can also estimate legacy clocks for the International GNSS Service (IGS), as well as clocks with satellite code bias extraction, and perform PPP-AR using the integer-recovered clock model. In this work, we designed satellite clock estimation and PPP-AR experiments with one week of GPS data to validate Cube’s performance. Results show that the software can produce high-precision satellite clock products and positioning results that are adequate for daily scientific study. With Cube, researchers do not need to rely on public PPP-AR products, and they can estimate decoupled clock products and implement PPP-AR anytime. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs16152739 |