Boundedness of some operators on grand generalized Morrey spaces over non-homogeneous spaces

The aim of this paper is to obtain the boundedness of some operator on grand generalized Morrey space $ \mathcal{L}^{p), \varphi, \phi}_{\mu}(G) $ over non-homogeneous spaces, where $ G\subset $ $ \mathbb{R}^{n} $ is a bounded domain. Under assumption that functions $ \varphi $ and $ \phi $ satisfy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS Mathematics 2022-01, Vol.7 (1), p.1000-1014
Hauptverfasser: He, Suixin, Tao, Shuangping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this paper is to obtain the boundedness of some operator on grand generalized Morrey space $ \mathcal{L}^{p), \varphi, \phi}_{\mu}(G) $ over non-homogeneous spaces, where $ G\subset $ $ \mathbb{R}^{n} $ is a bounded domain. Under assumption that functions $ \varphi $ and $ \phi $ satisfy certain conditions, the authors prove that the Hardy-Littlewood maximal operator, fractional integral operators and $ \theta $-type Calderón-Zygmund operators are bounded on the non-homogeneous grand generalized Morrey space $ \mathcal{L}^{p), \varphi, \phi}_{\mu}(G) $. Moreover, the boundedness of commutator $ [b, T^{G}_{\theta}] $ which is generated by $ \theta $-type Calderón-Zygmund operator $ T_{\theta} $ and $ b\in\mathrm{RBMO}(\mu) $ on spaces $ \mathcal{L}^{p), \varphi, \phi}_{\mu}(G) $ is also established.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2022060